MD-Simulations of the Dynamic Properties of a Nonideal Two-Component Plasma

2001 ◽  
Vol 41 (2-3) ◽  
pp. 271-274 ◽  
Author(s):  
T. Pschiwul ◽  
G. Zwicknagel
2015 ◽  
Vol 43 (5) ◽  
pp. 1023-1032 ◽  
Author(s):  
Thomas Stockner ◽  
Anna Mullen ◽  
Fraser MacMillan

ABC transporters are primary active transporters found in all kingdoms of life. Human multidrug resistance transporter ABCB1, or P-glycoprotein, has an extremely broad substrate spectrum and confers resistance against chemotherapy drug treatment in cancer cells. The bacterial ABC transporter MsbA is a lipid A flippase and a homolog to the human ABCB1 transporter, with which it partially shares its substrate spectrum. Crystal structures of MsbA and ABCB1 have been solved in multiple conformations, providing a glimpse into the possible conformational changes the transporter could be going through during the transport cycle. Crystal structures are inherently static, while a dynamic picture of the transporter in motion is needed for a complete understanding of transporter function. Molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy can provide structural information on ABC transporters, but the strength of these two methods lies in the potential to characterise the dynamic regime of these transporters. Information from the two methods is quite complementary. MD simulations provide an all atom dynamic picture of the time evolution of the molecular system, though with a narrow time window. EPR spectroscopy can probe structural, environmental and dynamic properties of the transporter in several time regimes, but only through the attachment sites of an exogenous spin label. In this review the synergistic effects that can be achieved by combining the two methods are highlighted, and a brief methodological background is also presented.


2014 ◽  
Vol 5 (2) ◽  
pp. 48-51
Author(s):  
Yu.V. Arkhipov ◽  
◽  
A. Askaruly ◽  
A.E. Davletov ◽  
D. Dubovtsev ◽  
...  

1994 ◽  
Vol 47 (6) ◽  
pp. 757
Author(s):  
Joydeep Mukherjee ◽  
A Roy Chowdhury

We have analysed the formation of solitary magnetosonic waves propagating in a direction perpendicular to the magnetic filed in a relativistic two component plasma. Our approach is that of the effective potential. Variations of the effective potential and the solitary wave in relation to the Mach number and other parameters are discussed.


2016 ◽  
Vol 94 (6) ◽  
Author(s):  
Zhen-Guo Fu ◽  
Zhigang Wang ◽  
Meng-Lei Li ◽  
Da-Fang Li ◽  
Wei Kang ◽  
...  

2021 ◽  
Vol 87 (4) ◽  
Author(s):  
Y. Nakajima ◽  
H. Himura ◽  
A. Sanpei

We derive the two-dimensional counter-differential rotation equilibria of two-component plasmas, composed of both ion and electron ( $e^-$ ) clouds with finite temperatures, for the first time. In the equilibrium found in this study, as the density of the $e^{-}$ cloud is always larger than that of the ion cloud, the entire system is a type of non-neutral plasma. Consequently, a bell-shaped negative potential well is formed in the two-component plasma. The self-electric field is also non-uniform along the $r$ -axis. Moreover, the radii of the ion and $e^{-}$ plasmas are different. Nonetheless, the pure ion as well as $e^{-}$ plasmas exhibit corresponding rigid rotations around the plasma axis with different fluid velocities, as in a two-fluid plasma. Furthermore, the $e^{-}$ plasma rotates in the same direction as that of $\boldsymbol {E \times B}$ , whereas the ion plasma counter-rotates overall. This counter-rotation is attributed to the contribution of the diamagnetic drift of the ion plasma because of its finite pressure.


Sign in / Sign up

Export Citation Format

Share Document